हाइब्रिड समतुल्य परिपथ का ट्रांजिस्टर माॅडल क्या है? | Hybrid Equivalent Circuit in Hindi

प्रशन 1. उभयनिष्ठ उत्सर्जक ट्रांजिस्टर प्रवर्धक का परिपथ आरेख खींचकर। इसका हाइब्रिड समतुल्य परिपथ खींचिए तथा हाइब्रिड प्राचलों का उपयोग करके निवेशी प्रतिरोध, धारा लाभ, वोल्टेज लाभ तथा शक्ति लाभ के लिए व्यंजक व्युत्पन्न कीजिए।

उत्तर – उभयनिष्ठ उत्सर्जक ट्रांजिस्टर प्रवर्धक – चित्र-1 में उभयनिष्ठ उत्सर्जक pnp ट्रांजिस्टर प्रवर्धक का परिपथ आरेख दिखाया गया है।

इसे भी पढ़ें… ट्रांजिस्टर की परिभाषा, प्रकार, कार्यविधि, चित्र, उपयोग व अन्तर समझाइए।

उत्सर्जक ट्रांजिस्टर

इसमें आधार तथा उत्सर्जक के मध्य निवेशी इनपुट सिग्नल को लगाया जाता है तथा संग्राहक तथा उत्सर्जक के बीच निर्गत आउटपुट सिग्नल प्राप्त होता है। वोल्टेज VBB द्वारा उत्सर्जक को अग्र अभिनति में तथा वोल्टेज VCC द्वारा संग्राहक को पश्च अभिनति में रखा जाता है इसमें निवेशी इनपुट सिग्नल तथा निर्गत आउटपुट सिग्नल के मध्य 180° का कालांतर रहता है।

हाइब्रिड समतुल्य परिपथ का ट्रांजिस्टर माॅडल

उभयनिष्ठ उत्सर्जक ट्रांजिस्टर प्रवर्धक का हाइब्रिड समतुल्य परिपथ चित्र-2 में दिखाया गया है।

हाइब्रिड समतुल्य परिपथ
हाइब्रिड समतुल्य परिपथ का ट्रांजिस्टर माॅडल

इस प्रकार समतुल्य परिपथ के लिए हाइब्रिड समतुल्य परिपथ के समीकरण निम्न होते हैं –
v1 = hiei1 + hrev2 …(1)
तथा i2 = hfei1 + hoev2 …(2)
अतः अन्य दो समीकरणें निम्न होंगी –
v1 = es – i1Rs …(3)
तथा v2 = – i2RL …(4)
अब समीकरण (4) से v2 का मान समीकरण (2) में रखने पर,
i2 = hfei1 – hoei2RL
अथवा i2 + hoei2RL = hfei1
अथवा i2 = \frac{h_{fe}i_1}{1 + h_{oe}R_L} …(5)

और पढ़ें… ट्रांजिस्टर बायसिंग: परिभाषा, प्रकार, विधियां, चित्र एवं लाभ व हानियां लिखिए?

हाइब्रिड H-प्राचलों द्वारा CE प्रवर्धक का गणितीय विश्लेषण

हाइब्रिड प्राचलों का उपयोग करके निवेशी प्रतिरोध, धारा लाभ, वोल्टेज लाभ व शक्ति लाभ के लिए व्यंजक इस प्रकार ज्ञात करते हैं।

(1). निवेशी प्रतिरोध – हाइब्रिड समतुल्य परिपथ के समीकरण (1) से,
v1 = hiei1 + hrev2
अब समीकरण (4) से v2 का मान उपरोक्त समीकरण में रखने पर,
v1 = hiei1 – hrei2RL
इसी प्रकार, समीकरण (5) से i2 का मान उपरोक्त समीकरण में रखने पर,
v1 = i1[hie \frac{h_{re}h_{fe}R_L}{1 + h_{oe}R_L} …(6)
यदि निवेशी प्रतिरोध Rie हो, तो समीकरण (6) से,
Rie = hie \frac{h_{re}h_{fe}R_L}{1 + h_{oe}R_L} …(7)

(2). धारा लाभ – उभयनिष्ठ उत्सर्जक प्रवर्धक में धारा लाभ Aie होता है। तब
Aie = \frac{निर्गत वोल्टेज}{निवेशी वोल्टेज} = – \frac{i_2}{i_1}
अब समीकरण (5) से i2 का मान उपरोक्त समीकरण में रखने पर,
Aie = – \frac{h_{fe}}{1 + h_{oe}R_L} …(8)

(3). वोल्टेज लाभ – CE प्रवर्धक में यदि वोल्टेज लाभ Ave हो, तो
Ave = \frac{निर्गत वोल्टेज}{निवेशी वोल्टेज} = \frac{v_2}{v_1}
समीकरण (4) से v2 का मान रखने पर,
Ave = – \frac{i_2R_L}{v_1} = – \frac{i_2}{i_1} या i2 = – Aiei1
अतः Ave = \frac{A_{ie}I_1R_L}{v_1} या Ave = \frac{A_{ie}R_L}{R_{ie}}
अब समीकरण (7) व (8) से Rie व Aie के मान रखने पर,

Ave = – \frac{h_{fe}}{1 + h_{oe}R_L} . \frac{R_L}{h_{ie} - h_{re}h_{fe}R_L/1 + h_{oe}R_L}

अर्थात् Ave = – \frac{h_{fe}R_L}{h_{ie} + R_L |h_e|} …(9)

(4). शक्ति लाभ – CE प्रवर्धक में यदि शक्ति लाभ Ape हो, तो
Ape = धारा लाभ × वोल्टेज लाभ = Aie × Ave
समीकरण (8) से Aie और समीकरण (9) से Ave का मान रखने पर,
Ape = – \frac{h_{fe}}{1 + h_{oe}R_L} \frac{h_{fe} + R_L}{h_{ie} + R_L |h_e|}
अथवा Ape = \frac{h^2_{fe}R_L}{(1 + h_{oe}R_L)(h_{ie} + R_L |h_e|)}

पढ़ें… CB CE तथा CC ट्रांजिस्टर प्रर्वधकों की विशेषताओं की तुलना कीजिए?

पढ़ें… ट्रांजिस्टर का आयाम माॅडुलेटर के रूप में उपयोग क्यों किया जाता है?

पढ़ें… ट्रांजिस्टर लोड लाइन विश्लेषण क्या है? DC लोड रेखा खींचकर Q-बिंदु समझाइए।

प्रशन 2. उभयनिष्ठ उत्सर्जक ट्रांजिस्टर प्रवर्धक परिपथ तथा इसका हाइब्रिड समतुल्य परिपथ बनाकर व्याख्या कीजिए। धारा लाभ, निवेशी प्रतिरोध व वोल्टेज लाभ ज्ञात कीजिए।

उत्तर उभयनिष्ठ उत्सर्जक ट्रांजिस्टर प्रवर्धक – चित्र-3 में उभयनिष्ठ उत्सर्जक विधा में npn ट्रांजिस्टर प्रवर्धक दर्शाया गया है। इसमें उत्सर्जक टर्मिनल निवेशी तथा निर्गत दोनों ही परिपथों में उभयनिष्ठ हैं।

उत्सर्जक ट्रांजिस्टर

हाइब्रिड समतुल्य परिपथ के ट्रांजिस्टर माॅडल की व्याख्या

चित्र-4 में CE प्रवर्धक का हाइब्रिड समतुल्य परिपथ प्रदर्शित है। यहां ‘RS‘ स्त्रोत का आंतरिक प्रतिरोध है। तथा प्रतिरोध Rin को इसलिए छोड़ दिया गया है क्योंकि यह a.c. प्रचालन पर कोई प्रभाव नहीं डालता है।

हाइब्रिड समतुल्य परिपथ
हाइब्रिड समतुल्य परिपथ के ट्रांजिस्टर माॅडल की व्याख्या

समतुल्य परिपथ से प्राप्त हाइब्रिड समीकरण निम्न है –
VB = hie.IB + hre.VC …(1)
IC = hfe.IB + hoe.VC …(2)
यहां VC = es – IB.Rs …(3)
यहां VC = – IC.RL …(4)
अब समीकरण (4) से VC का मान समीकरण (2) में रखने पर,
IC = hfe.IB – hoe.IC.RL
अथवा IC = \frac{h_{fe}.I_B}{1 + h_{oe}.R_L} …(5)

(1). धारा लाभ (Current gain) – धारा लाभ Aie हो, तो
Aie = \frac{निर्गत वोल्टेज}{निवेशी वोल्टेज} = \frac{I_C}{I_B}
अब समीकरण (5) से,
Aie = \frac{h_{fe}}{1 + h_{oe}.R_L} …(6)

(2). निवेशी प्रतिरोध (Input resistance) – समीकरण (4) से VC का मान समीकरण (1) में रखने पर,
VB = hie.IB – hre.IC.RL
अब समीकरण (5) से IC का मान रखने पर,
VB = hie.IB \frac{h_{re}h_{fe}I_B.R_L}{1 + h_{oe}.R_L}
या VB = IB[hie \frac{h_{re}h_{fe}R_L}{1 + h_{oe}.R_L}
अतः निवेशी प्रतिरोध
Rie = \frac{V_B}{I_B} = hie \frac{h_{re}h_{fe}R_L}{1 + h_{oe}.R_L} …(7)

(3). वोल्टेज लाभ (Voltage gain) – वोल्टेज लाभ Ave हो, तो
Ave = – \frac{निर्गत वोल्टेज}{निवेशी वोल्टेज}
या Ave = – धारा लाभ × \frac{R_L}{R_{ie}} = – \frac{A_{ie}.R_L}{R_{ie}}
अब समीकरण (6) व (7) से Aie व Rie के मान रखने पर,

Ave = – \frac{h_{fe}}{1 + h_{oe}.R_L} × [ \frac{R_L}{[h_{ie} - h_{re}h_{fe}R_L/1 + h_{oe}.R_L} ]

या Ave = \frac{- h_{fe}.R_L}{h_{ie}(1 + h_{oe}.R_L) - h_{re}h_{fe}.R_L}

अर्थात् Ave = \frac{- h_{fe}R_L}{h_{ie} + R_L(h_{ie}h_{oe} - h_{re}h_{fe})} …(8)

Read More –

  1. यान्त्रिकी एवं तरंग गति नोट्स (Mechanics and Wave Motion)
  2. अणुगति एवं ऊष्मागतिकी नोट्स (Kinetic Theory and Thermodynamics)
  3. मौलिक परिपथ एवं आधारभूत इलेक्ट्रॉनिक्स नोट्स (Circuit Fundamental and Basic Electronics)
Share This Post

Leave a Reply

Your email address will not be published. Required fields are marked *